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EXPLICIT DIFFERENCE SCHEMES FOR WAVE 
PROPAGATION AND IMPACT PROBLEMS* 

Joseph E. Flaherty 
Department of Mathematical Sclencea 
Rensselaer Polytechnic Inatitute 

Troy, NY 12181 

and 

U.S.  Army Armament Research and Development Command 
Large Caliber Weapon Systems Laboratory 

Benet Weapons Laboratory 
Watervllet. NY    12189 

ABSTRACT.    Explicit finite difference and finite element schemes are 
constructed to solve wave propagation, shock, and impact problems.    The 
schemes rely on exponential functions and the solution of linearised Rlemann 
problems in order to reduce the effects of numerical dispersion and diffusion. 
The relationship of the new schemes to existing explicit schemes is analysed 
and numerical results and comparisons are presented for several examples. 

I.    INTRODUCTION.    Exponentially fitted and/or weighted finite difference 
(9,111,  finite element [3,9,10],  and collocation [5]  schemes have become 
popular and effective methods of solving steady convection-diffusion problems. 
They avoid the spurious mesh oscillations that are found near boundary and 
shock layers when centered schemes are used at high cell Reynolds or Peclet 
numbers and they reduce the effects of numerical diffusion that are associated 
with classical upwind difference schemes. 

We seek to extend exponential methods to transient problems and as a 
first step we consider one-dimensional scalar Initial value problems of the 
form 

ut + f(u)x -  cu«    ,    t > 0    ,     |x| < • 

u(x,0) - u0(x)    ,    |x| < - (1) 

where 0 < e « 1 is either a real or an artificial viscosity parameter and the 
x and t subscripts denote partial differentiation. 

Our primary motivation for studying exponential schemes is a desire to 
develop Improved numerical methods for elastic-plastic impact problems In 
pollds and blast problems in gases. 

*This research was partially sponsored by the U.S. Air Force Office of 
Scientific Research, Air Force Systems Command, DSAF, under Grant Number 
AFOSR 80-0192.    The United States Government is authorized to reproduce and 
distribute reprints for government purposes notwithstanding any copyright 
notation thereon. 
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In this paper, we confine our attention to explicit difference 
approxiaations of (1) having the form 

UttHj - Ut»j - - M(l + «Vl/lX^J - f^j-i) + (1 - tnj+i/2)(fnJ+I * ^J» 

+ ^- (OOj-x - 2^ + ünj+1)    ,    n > 0    ,    |j | < - 

DOj - u«>(JAx)     ,    |j| < - (2) 

where Ax and At denote the uniform spatial and temporal grid spaclngs, 
respectively, U0*  is the numerical approximation of u(J&x,n&t), 

fnj  :- f(ünj)     ,    X- At/Ax (3,4) 

and xn<t+i/2 are upwind weighting factors. 

Many popular difference schemes have the form of (2) and some of these 
are discussed and compared in Section II.    We also introduce an exponential 
scheme that is based on determining xnj±i/2 ao that M0* is the exact solution 
of the linearized steady equation 

cux " £uxx C5) 

when c - f (u) is a constant.    We call this method the linearised steady 
exponential (LSE) method and it is the simplest extension of the exponentially 
fitted and weighted schemes [3,9,10,11]  to transient problems.    The scheme 
gives improved accuracy for steady shock problems, but offers little improve- 
ment over classical upwind differencing for moving shock problems. 

In Section III we develop an exponential scheme that is based on the 
exact solution of a linearized transient equation (1) that is subject to 
piecewise constant initial data, i.e., a linearized Riemann problem for (1). 
We call this method the linearized transient exponential (LTE) method and, 
like other methods based on the solution« of Riemann problems [1,2,4,6,8,13, 
15,16], it sharply resolves boundary and shock layers without added diffusion 
or spurious oscillations.    As e + 0 the LTE method becomes formally equivalent 
to Roe's method [15,16]  for hyperbolic systems of conservation laws,   van Leer 
[17] has noted that Roe's method treats an expansion fan as a so called 
"expansion shock" (cf. Figure 6) and, unfortunately, our LTE method also has 
this disturbing property even when e Is nonzero, but small. 

In Section IV we present some preliminary results for vector systems of 
equations and in Section V we discuss our results and indicate some directions 
for future work. 

II.    THE LINEARIZED STEADY EXPONENTIAL (LSE) METHOD.    The LSE method is 
obtained from (2) by selecting t\t k - j^l/2, as      "~~ 

z\ - coth PV2 * 2h\ (6) 
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where p\ !■ the cell Reynolds number 
'" •-< i - - • ,. 

■.;' 5 K ■ » '•   Ll   _}   * 

o 

v      >     1-1   IP 
r   ^   « ~    , 

'j 

»•   r. 

and 

Ax    cVl/2 + cVl/2 

^ * 7 < i ' 

c^   :- f'dJ^j) 

(7) 

(8) 

As previously noted, the LSE method will give a pointwise exact steady state 
solution of (1) when cnj  is a constant.    This or similar schemes have been 
used by several investigators [3,9,10,11] for steady singularly-perturbed 
problems and herein we try to apply it to transient problems. 

We first consider a linear stability analysis of the difference scheme 
(2) by letting f(u) - cu where c is a constant. We also let p and c denote 
the constant values of p\ and t\, respectively, a denote the Courant number 

a - cAt/Ax (9) 

and ß denote the dissipation parameter 

P - a(t + 2/p) (10) 

In this case, equation (2) can be written as 

Un+lj - IPJ - - a(üDj+1 - iPj-i) + - ed^j+i - 2Unj + V^-O      (11) 

Several popular difference schemes have the form of (11) for different 
values of ß (or z) and some of these are listed in Table 1.    All of these 
schemes are first order accurate in time, except the Lax-Wendroff scheme which 
is second order. 

A von Neumann analysis (cf. Rlchtmyer and Norton [14]) shows that 
equation (11) Is stable in the region on < 0, 0 < ß < 1.    This region is shown 
shaded for a > 0 in Figure 1.    Curves corresponding to the methods in Table 1 
are also shown.    We see that the LSE method slightly improves upon the 
stability and accuracy properties of upwind differencing and that centered 
differencing and the Lax-Friedrichs scheme are outside of the stability region 
for most values of a and 3. 

Example 1;    We compare the methods in Table 1 on the constant coefficient 
initial-boundary value problem 

ut + ux - cu,,    ,    t>0    ,0<x<l 

u(x,0) - 0    ,    0 < x < 1 

u(0,t) - 1     ,    u(l,t) - 0 (12) 

The exact solution of this problem features a shock layer that moves from x ■ 
0 to x - 1 with unit speed and then approaches the steady state solution 
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u(x,t) ■  (13) 
1 - «-I/« 

«» t ♦ ". 

The maximum error at steady state 

max|u(j&x,nAt) - 0"j |  , n •» - (14) 
J 

computed by the Lax-Vendroff, upwind, LSE, and Lax-Frledricha schemes are 
shown In Table 2 for Ax - 1/20, p - 6, a - 0.375, 0.75 and to. - 1/20, p - 500, 
a - 0.A75, 0.95*. 

The centered difference scheme produced overflows for both p " 6 and 
500, so no results could be listed for It. The Lax-Frledrlchs scheme only 
overflowed for p > 6. The LSE scheme gives the exact steady state solution 
for this example and the small error a reported in Table 2 are due to the 
combined effects of roundoff and our failure to reach the exact steady state. 

These results are very encouraging; however, when we examine the LSE 
solution during the transient phase of the solution the situation is quite 
different (cf. Figure 2). The LSE solution is overly diffusive and the 
computed solution is not much better than that obtained by upwind 
differencing. This observation was also noted by Gresho and Lee [7] about 
methods that are similar to the LSE method. 

III. THE LINEARIZED TRANSIENT EXPONENTIAL (LTE) METHOD. We would like 
to Improve upon the results of the LSE method for transient problems and, 
thus, we consider developing a method having the form of (2) that gives a 
pointwlse exact solution of (1) when f(u) - cu and c is a constant. Since we 
are primarily interested in obtaining good resolution near shock and boundary 
layers we choose to solve (1) subject to Riemann initial data. To be 
specific, for each j and n we compute U0"*"^ as the exact solution of ths 
initial value problem. 

ut + cux - cuxx , t > nAt , |x| < • , 

«L . « < (j-l+OAx 

«R . « > (J-l+ß)Ax 

u(x,nAt) - (15) 

where u^ and UR are constants,  6 is a constant on (0,1) to be determined, and 
we assume that c > 0.    Ve shall present results for c < 0 later. 

The exact solution of (15) at z - jAx and t - (n+l)At is 

u(JAx,nAt) - uR - -(uR-uL)erfc - J- (l-6-o) (16) 
2 2|o 

«All numerical results were obtained in double precision on an IBM 4341 
computer at the Benet Weapons Laboratory. 

324 



whcrus the »olution of equ&tion (2) at this point Is 

üW-lj - uR - - o(l ♦ tnj-i/2 + 2/p)(uR-uL) (17) 

The two solutions will be the same provided that 
2      1 1    fp 

«n
1.1/2 - -1 - - + - «rfc -*/- (l-6-o) (18) J pa 2 If o 

In this paper, we simplify (18'/ by asstnlng that p/a » 1 and approxi- 
mating the complementary error function by 2H((+ct-l), where H la a Heavlslde 
function.    Also, since 8nj+i/2 la not determined by this procedure, we specify 
it according to equation (6) with coth p/2 approximated by unity.    Thus, we 
have 

2 1 2 
«Vi/2 - 1  - - + 2(- H(6+(»-l) - 1]    ,    tnHl/2 - 1 " " (19a) J p a J p 

When c < 0 we choose 
2 2 I 

8Vl/2 • -1 - *    ,    «nJ+l/2 - -1 " " + 21- H(6-a-l) + 1)        (19b) 
P pa 

It remains to specify 6.    One possibility is to choose it to be a random 
variable uniformly distributed on 10,1), in which case equations (2) and (19) 
would yield a linearized random choice scheme [1,2].    A second possibility is 
to always select 6 ■ 1/2 which would give a Godunov [6] type scheme.    The 
third possibility is similar to a scheme suggested by Roe [15] and is the one 
that we have been using.    We begin by selecting 6*0; however, any value of 
6t[0,l) will do.    After each time step we add the magnitude of the Courant 
number  |a| to 6 and obtain a new value of 6.   We continue this process until 6 
exceeds unity, in which case we replace 6 by 6-1.    The procedure has to be 
modified slightly when a is not a constant and we shall Indicate how this is 
done shortly; however, if a is a rational number of the form p/q and c - 0 
then equations (2) and (19) have the advantage of giving the pointwlse exact 
solution of the linearized Riemann problem every q time steps. 

We refer to the scheme consisting of equations (2) and (19) and the above 
choice of 6 as the linearized transient exponential (LTE) method and we begin 
by applying it to the following linear Riemann problem. 

Example 2; 

ut + ux - euxx    ,    t > 0    ,    |x| < - (20) 

1    ,    x < 0 

0    ,   x > 0 
u(x,0) 

In this example, the initial diacontinulty becomes a shock layer which travels 
with unit speed in the positive x direction while widening as t increases. 

We have computed the solution of this problem by the LTE method with Ax ■ 
1/20, p - 500, and a - 0.75, 0.95.    For this value of p and for tlmeb less 
than order 1/e, the shock layer is well contained within one mesh subinterval 
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and «e hav« plotttd the locations of the ande of thli lublnterval along with 
the exact position of the center of the shock layer in Figures 3 and 4 for o - 
0.75 and 0.95, respectively. We see that the shock layer is tracked exactly 
on the average and that we obtain the pointwise exact solution every 4 and 20 
tine steps «hen a ■ 0.75 and 0.95, respectively. 

For nonlinear scalar problems we still use equations (2) and (19); 
however, we now use local values of the Courant and Reynolds nunbers based on 
a local shock speed. Thus, on each subinterval we calculate 

aVl/2 " ^j-l^Ät/Äx , Pnj-i/2 - 8nj_1/2Ax/e     (21a,b) 

where •nj-i/2 i* • local shock speed which we choose as 

SöJ.^2 - (fnj - f^-O/OPj - ünj.i) (22) 

Equations (21) are used in equations (19) to calculate znj-i/2 *°d we proceed 
as in the linear case.   After each time step we add 

(■fc»l0Vl/2l +»axl<sVl/2l)/2 

to 6 and obtain a new value of 6.    Once 5 exceeds unity we again replace it by 
6-1. 

Equation (22) gives the exact shock speed whenever IPJ and Va\~i satisfy 
the Rankine-Hugoniot Jump conditions (cf. e.g. Whitham [18] and equation 
(27)).    An alternate definition of •nj-i/2 that is easier to use 
computationally, but only gives the correct shock speed when f is at most a 
quadratic function of u is 

•nj-l/2 " - U'CUV + f'dPj-!)!    . (23) 

Example 3:    We consider a Riemann problem for Burgers' equation 

«t + " («2)x " eu«    ,    t > 0    ,    |x| < -   , 

u(x,0) - 
uL    ,    x < 0 

(24) 
uR    ,    x > 0 

The exact solution of this problem can be obtained by the Hopf-Cole transfor- 
mation and is given in, e.g., Whitham [18].    Herein, it suffices to give 
aeymptotic formulas which are valid for t/e » 1.    Thus, when u^ > UR we have 

1 1 «L " "R 
u(x,t) ~ -(uL + UR) - -(UL - uR) tanh (—- )(x - St) (25») 

2 2 4c 
where 

1 
S - - (uL + uR) (25b) 
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and when u^ < UR we have 

u(x,t) ~ 

uL    ,    x/t < UL 

x/t    ,    UL < x/t < UR (26) 

uR    ,    uR < x/t 

Equation (25)  represents a shock layer moving in the positive x direction with 
speed S and equation (26) represents an expansion fan. 

We calculated solutions with e - lCr\ Ax - 1/20, and  X - 0.95 by the LSE 
and LTE methods for a shock problem with u^ ■ 1, UR • 0 and an expansion 
problem with UL - -1, UR ■ -1/2.    In Figure 5 we compare the exact shock 
position with those calculated by the LSE and LTE methods.    We define the 
shock position for the numerical methods as the point where the solution is 
(UL - UR)/2 when linear interpolation is used to compute solution values 
between mesh points.    In Figures 6a and 6b we plot the exact LSE and LTE 
solutions at t ■ 0.95 for the shock problem and at t - 0.38 for the expansion 
problem, respectively.    The LTE method again confines the shock layer to one 
subinterval and gives the correct shock speed and position on the average. 
The LSE method is overly diffusive and is giving the correct shock speed, but 
the position is wrong by about Ax/2. 

The situation is quite different for the expansion fan.    The LSE method 
is still overly diffusive; however,  the LTE method is representing the 
expansion fan as a shock.    This phenomenon also occurs with Roe's scheme for 
hyperbolic systems (cf. Roe [16] and van Leer (17]) and it must be remedied if 
these schemes are to be useful on expansion problems. 

IV.    SYSTEMS OF EQUATIONS.    In principle the LTE method consisting of 
equation (2), (19), and (21) may be directly extended to vector systems of 
the form (1) once we have selected a shock speed 8n4_j/2«    When e ■ 0 the 
exact shock speed S is determined by the Rankine-Hugoniot condition 

(UR - UL)S - f(uR) - f(uL) (27) 

where UR and JJL are the values of u(x,t) on opposite sides of the shock. When 
e is nonzero but snail we would like the numerical shock speed 8nj-i/2 " S 
whenever the numerical solution ^j-j, U11* satisfies (29). 

In a recent paper Harten and Lax [8] suggested selecting 

inJ-l/2 " Kf'j " f J-l)/*^ - ^j-l) (28a) 

where t(w) is the linear functional 

i(w) - (V^unj) - VWj-^lw (28b) 

and V(u) is an entropy function.    They show that this choice gives unique 
physically admissible numerical solutions of their random choice finite 
difference methods. 
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Roe (16] tuggestt an «Ittrnate nethod of calculating >Dj-i/2 th*' i> 
based on the algenvalut of ■ utrlx «pproxlnatlng the Jacoblan 9f/9u. 

We have not tried either of theae alternatives, hut Instead use the very 
staple prescription 

CüHJ - uVi)1^ - Tj-i) 
•nJ-l/2 ;  (29) 

Equation (29) gives the exact shock speed whenever D0«  and l^j-i satisfy 
Ranklne-Hugonlot conditions (27), but it may fall to give a physically 
acceptable solution. 

the 

Example 4; We solve the following impact problem for the linear wave 
equation 

ult - »2x " 0 . «2t " «Ix - 0 , t > 0 , |x| < - 

1 . x< 0 
ui(x,0) - 0 , U2(x,0) (30) 

-1 . x > 0 

Here u^(x,t) and U2(xlt) represent the strain and velocity in two elastic rods 
that impact each other with unit speeds at x ■ t ■ 0. 

We calculated the solution of this problem by the LSE and LIE methods and 
by the EPIC-2 code [12]. The latter is a two-dimensional finite element code 
for elastic-plastic impact problems. Our results for uj at t - 0.95 obtained 
with Ax - 1/10 and X - 0.95 are shown in Figure 7. The LSE and LIE solutions 
are typical of our results on previous examples. The LIE nethod again calcu- 
lates the correct shock position and speed with no diffusion or oscillations. 
The LSE solution is overly diffusive, although less so than the EPIC-2 solu- 
tion. 

V.    DISCUSSION OF RESULTS.    The LTE method appears to be a very promising 
scheme for shock problems.    It is simpler to apply than methods based on the 
exact solution of Riemann problems [1,2] and does not suffer from the effects 
of artificial diffusion or spurious oscillations.    However, our results are 
very preliminary and there are still many questions to be answered and many 
problems to be overcome.    The performance of the LTE method in regions of 
expansion must be improved,   van Leer [17] has suggested incorporating 
expansion fans in the approximate Riemann solution of Roe's method [16], and 
this approach should work for our LTE methou as well.    Another possibility is 
to base the difference scheme (2) on the exact solution of (1) when f is a 
quadratic function of u.    The solution of this problem does contain expansion 
waves; however, extending this method to systems of equations would be 
considerably more dilficult than extending the LTE method. 

Both the LSE and LTE methods are first order accurate iu time when the 
solution is smooth,    van Leer [17] has developed a two-step procedure that can 
be used to extend these methods to second order accuracy and we plan to 
experiment with it shortly. 
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There ii also the poealblllty of dtvtlopiog iapllclt exponentially fitted 
and weighted echemee, which would be deelreble when approaching a ateady atate 
and which aay Improve the phaae characterlatlca of the LSE wethod (cf. Greaho 
and Lee [7]). 

Finally, we note that the LSE and LTE aethoda can be extended to higher 
dinenalonB by using operator splitting techniques.    However, thla aay 
Introduce aome ninerlcal dlffualon. 
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TABLE 1.    VALUES OF i AND $ FOR DIFFERENCE METHODS 
THAT HAVE THE FORM OF EQUATION (11) 

Method z ft • oU + 2/p) 

Centered 0 2a/p 

Lax-Wendroff a o2 + 2o/p 

Upwind Bgn(p) «»(•gn(p) + 2/p) 

Linearised steady 
exponential (LSE) 

coth(p/2) - 2/p acoth(p/2) 

Lax-Frledrlchs 1/a 1 + 2o/p 

TABLE 2.    MAXIMUM ERROR AT STEADY STATE FOR EXAMPLE 1. 
AN * INDICATES THAT THE COMPUTED SOLUTION 
PRODUCED AN OVERFLOW. 

Method 

P ■ 6 P - 500 

o - 0.375 0.75 a - 0.475 0.95 

I    Lax-Wendroff 

Upwind 

Linearized steady 
exponential (LSE) 

Lax-Frledrlchs 

2.9 E-l 

2.0 E-2 

2.5 E-U 

* 

1.6 E-3 

2.0 E-2 

2.5 E-14 

* 

3.5 E-l 

2.0 E-3 

8.5 E-8 

3.6 E-l 

2.3 E-2      | 

2.0 E-3 

2.1 E-12 

2.8 E-2 
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Figure 1.   Region of linear etablllty for equation (11) and curves of $ vs. o 
for the centered difference (C), Lax-Vendroff (LH), upwind 
difference (U), linearised steady exponential (LSE), and 
Lax-Frledrlche (LF) methods. 

Figure 2.   Ooaparlson of exact and LSE solutions of Example 1 at t - 0.475. 
Calculations were performed with Ax - 1/20, a - 0.95, and p - 500. 
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Figure 3.   Exact shock layer position and the location of the sublnterval 
containing the shock layer calculated by the LTE method for Example 
2 with Ax - 1/20, o - 0.75, and p - 500. 
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Figure 4.   Exact shock layer position and the location of the sub interval 
containing the shock layer calculated by the LTE «ethod for Example 
2 with Ax - 1/20. a - 0.95, end p - 500. 
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Figure 5.    Exact shock layer position and those calculated by the LSE and LTE 
nethods for Example 3 with c - l(r\ Ax - 1/20, and a - 0.95. 
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Figure 6. Exact, LSE, and LTE solutions of Example 3 with e - 10" , Ax ■ 
1/20, and a - 0.95. In (a) ve ehow the solution at t - 0.95 of a 
shock problem with UL • 1, UR - 0, and in (b) ve show the solution 
at t ■ 0.38 of an expansion problem with uj, ■ -1» UR • -1/2. 
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Figure 7.    Oomparlton of exact, LSE, LTE, and EPIC-2 solutloae for uj of 
Example 4 at t - 0.95 with Ax - 0.1 and At - 0.095. 
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